
Careers in Mining and Mineral Resources: Open Pit Rock Mechanics

Matthew Clark, BSc Eng. (GE), P.Eng.

Overview

- What is rock mechanics?
- My path to rock mechanics
- Full time employer SRK
- Where I've worked around the world
- Rock mechanics overview and common software
- How does a rock mechanics engineer design a slope?
- Who should go into rock mechanics?

Problem Statement

How do we go from this...

http://www.tunneltalk.com

...to a stable developed mine without having any...

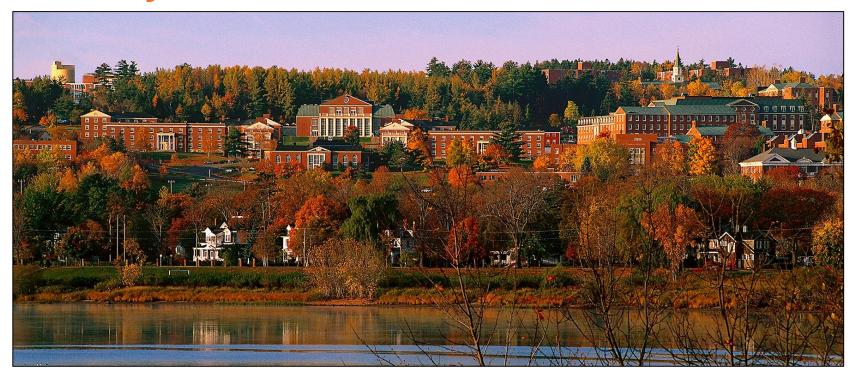
...Pit Slope Failures!?

http://www.flickr.com/photos/riotinto-kennecottutahcopper/8643310015/in/photostream

We do need a bit more science and engineering than that used by these people,

however, they probably do have well tested empirical design concepts and methods.

High School – Liverpool, NS



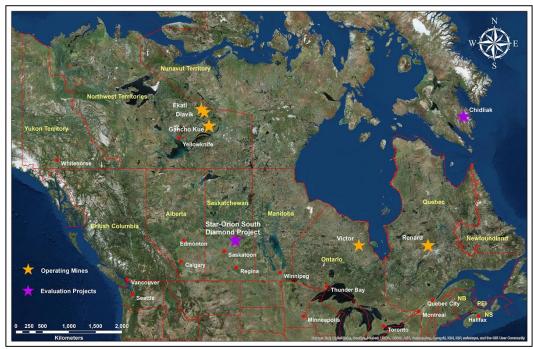
- Excelled in sciences, but especially math
- Seemed like a math degree made the most sense
 - Math teacher convinced me otherwise
- Grandfather was a electrical engineer and I decided to follow that route (I didn't even know what an engineer really was)

University of New Brunswick, Fredericton

- Decided between UNB, Dal, and SFX
 - Even though I received the most support from Dal, I followed a number of my friends to UNB
- Started in Computer engineering

Transitions to Geology/Mining

- During first year, realized that I didn't want to be in computer engineering
- My neighbour in residence (she was a student academic advisor) was in geology. Talking with her made me consider moving to Geological Engineering
- Graduated in 2005 with a degree in Geological Engineering with the Geotechnical Option



Move to Vancouver

- The job was located in Saskatchewan on a 28 day on, 7 days off rotation
- The site was Star-Orion Diamond project.
- Owned by Shore Gold and recently acquired by Rio Tinto

- Started with SRK on a contract basis (which is common in that company)
- Found (by googling) two companies in Vancouver and emailed them looking for work.
- Had two job interviews that day on the phone

SRK Company profile

SRK is established

New offices: Vancouver, Cape Town, Durban

New offices: Port Elizabeth, Pietermaritzburg, Santiago, Perth, Brisbane, Elko, Fort Collins, Tucson, Sydney, Pretoria, Yellowknife

New offices: Queretaro, Almaty, Ulaanbaatar, Lubumbashi, Accra, Mendoza, Lima, St. Petersburg, Copenhagen, Hong Kong, Cameroon

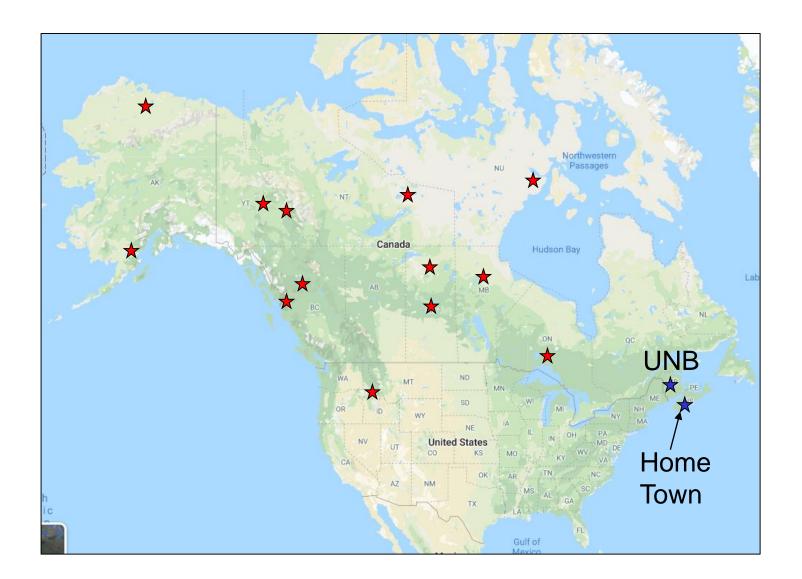
New offices: Denver, Harare, Reno, Cardiff

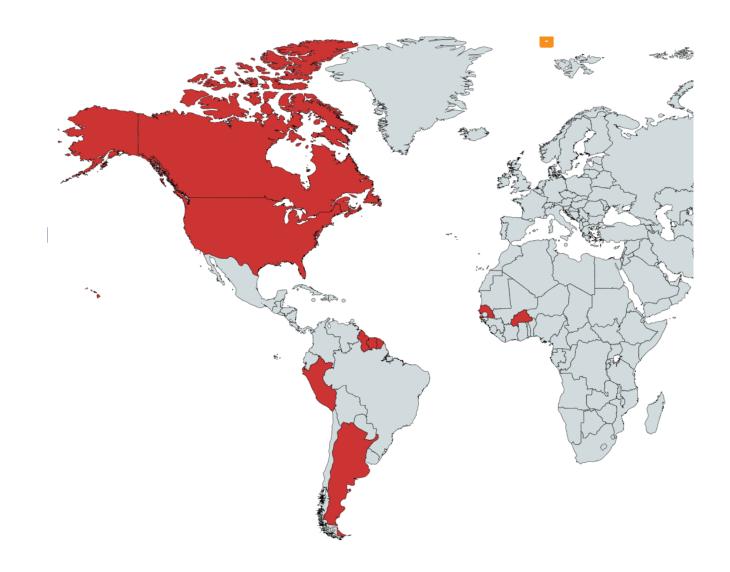
New offices: Toronto, East London, Ankara, Rustenburg, Newcastle, Beijing, Belo Horizonte, Saskatoon, Sudbury, Dar-es-Salaam, Kolkata, Moscow, Kimberley, Melbourne, Anchorage, Buenos Aires, Nanchang, Jakarta, Skellefteå

With 40 years of experience behind us, we are looking to the future – working on new and better ways to serve our clients

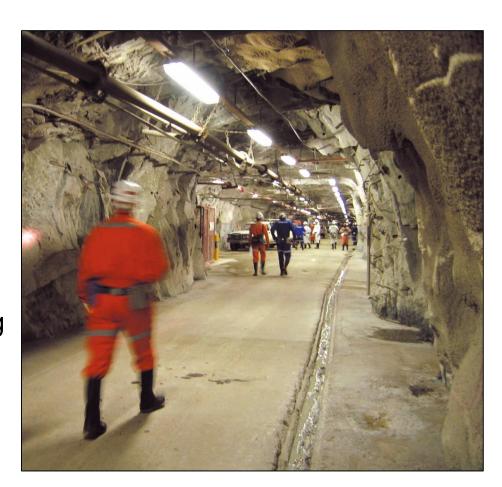
Founders: Hendrik Kirsten, Andy Robertson, and Oskar Steffen

Consultant of the Year, 2019

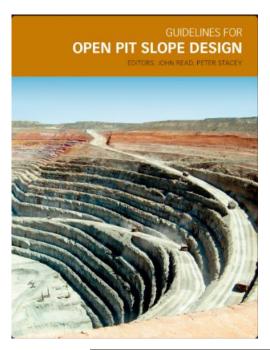

SRK Consulting

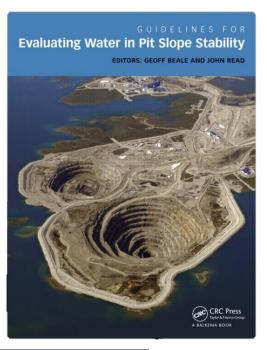

Where I've worked - North America

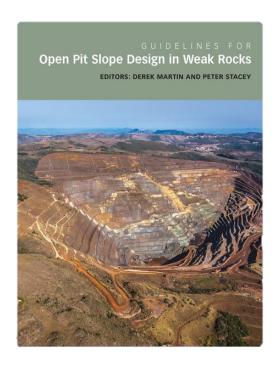
Where I've worked - World



Geotechnical Rock Mechanics


- Rock slope engineering
- Underground rock engineering
- Mine backfill
- Blast design
- Soil and foundation engineering





Recommended Reading

These three books are the background to what a rock mechanics engineer does

What Affects Pit Slope designs?

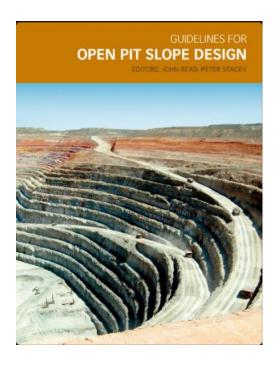
Team Effort

- Geology: Lithology, alteration, weathering
- **Structure:** Fault/discontinuities, condition and orientation
- Rock Mass Conditions: Intact Rock
 Strength (IRS), spacing of discontinuities,
 condition of discontinuities
- **Hydrogeology:** Pore pressures
- Slope Geometry: Orientation and Confinement, stack and overall slope height, stress (Discussed in Part 2)

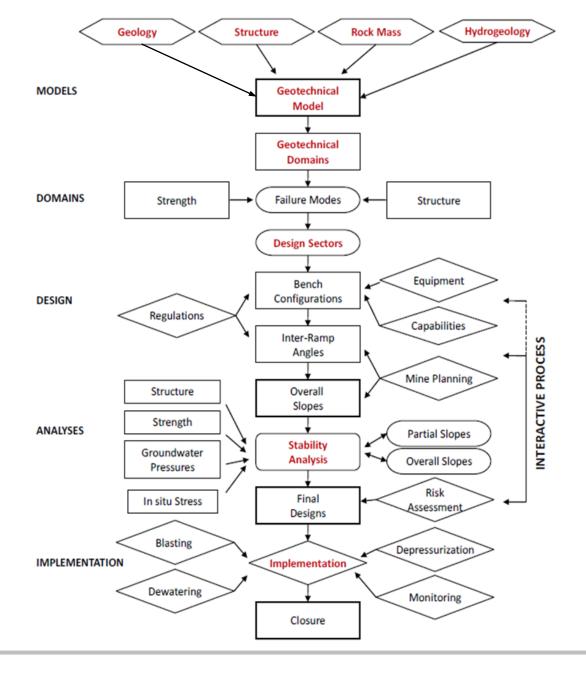
Geology Degree

Geology Degree

Rock Mechanics Engineering


Hydrogeology

Mining Engineering

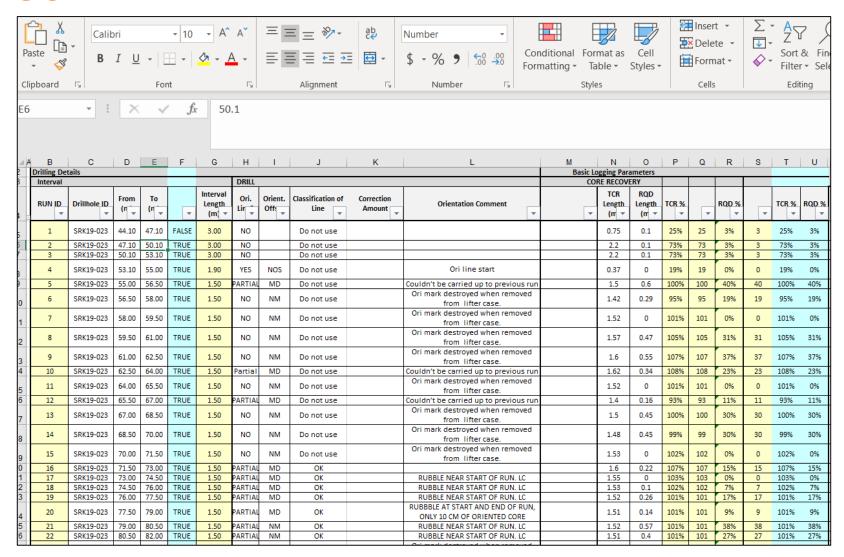


Slope Design Process

Guidelines for Open Pit Slope Design – 2009 Editors: John Read and Peter Stacey/John Read Slope Stability 2013, Brisbane

Most Common Software...

Useful for organizing data and analysis into easy to digest format



Much of what we do involves processing lots of numeric data and Excel is the easiest format to use

Excel

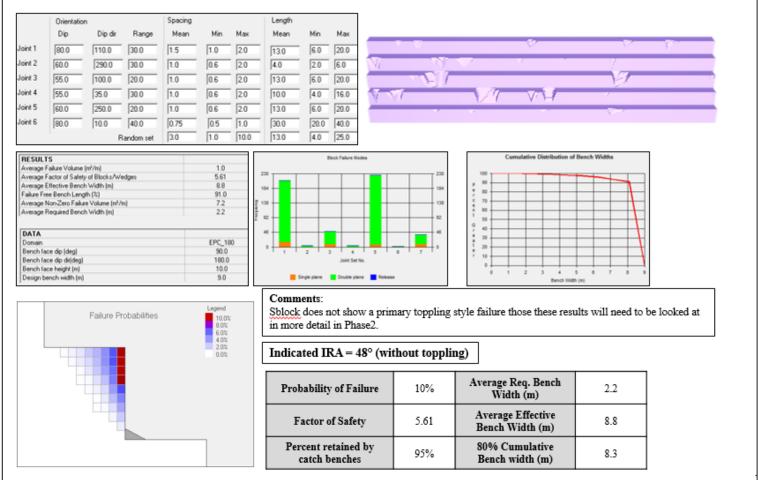
Large data processing

Deposit	Graphite	Length	Length	Length	Length	Length	Count	RMR	76	IRS (N	1Pa)	RQD	%	FF/	m	JC ₇	6	Greys	cale
Deposit	Grapriice	lice Length		Average	StDev	Average	StDev	Average	StDev	Average	StDev	Average	StDev	Average	StDev				
DNE	0	16.5	6	63	8	106	50	97	4	1.67	1.24	6	1	4.8	1.7				
	1	500.7	255	56	11	91	35	89	19	3.79	4.20	6	4	6.6	1.3				
	2	562.7	322	44	14	68	35	69	34	7.80	8.04	4	4	7.1	0.9				
	3	291.5	190	36	15	47	34	54	36	14.41	12.51	3	3	7.3	0.7				

Graphite	Litho	Length	Drilled Run	RMR ₇₆		IRS (MPa)		RQD%		FF/m		JC ₇₆ (based on '89 conditions)		Greyscale	
			Count	Average	StDev	Average	StDev	Average	StDev	Average	StDev	Average	StDev	Average	StDev
	FLMD	80	39	61	8	128	35	96	4	3	2	7	3	4.7	1.0
	BSSM	238	126	55	12	85	27	89	21	4	5	6	4	7.1	0.9
1	ACTM	32	15	61	7	129	33	94	7	2	2	7	3	5.7	0.6
	CCMS	123	61	53	9	75	21	85	19	5	5	7	4	7.2	0.5
	Total	501	255	56	11	91	35	89	19	4	4	6	4	6.6	1.3
	BSSM	172	103	44	13	62	19	71	32	8	8	3	3	7.3	0.6
	USMS	53	40	33	13	48	25	45	36	12	9	3	4	7.9	0.4
2	ACTM	83	39	49	12	66	35	84	22	5	5	4	3	6.6	1.0
	CCMS	231	127	47	15	78	44	68	36	8	9	5	4	7.1	0.7
	Total	563	322	44	14	68	35	69	34	8	8	4	4	7.1	0.9
	BSSM	38	31	34	13	43	24	51	34	14	12	2	3	7.6	0.5
,	USMS	28	21	36	13	32	19	56	32	10	9	3	3	7.7	0.6
3	CCMS	210	128	36	16	49	37	52	37	16	13	3	3	7.2	0.6
	Total	292	190	36	15	47	34	54	36	14	13	3	3	7.3	0.7

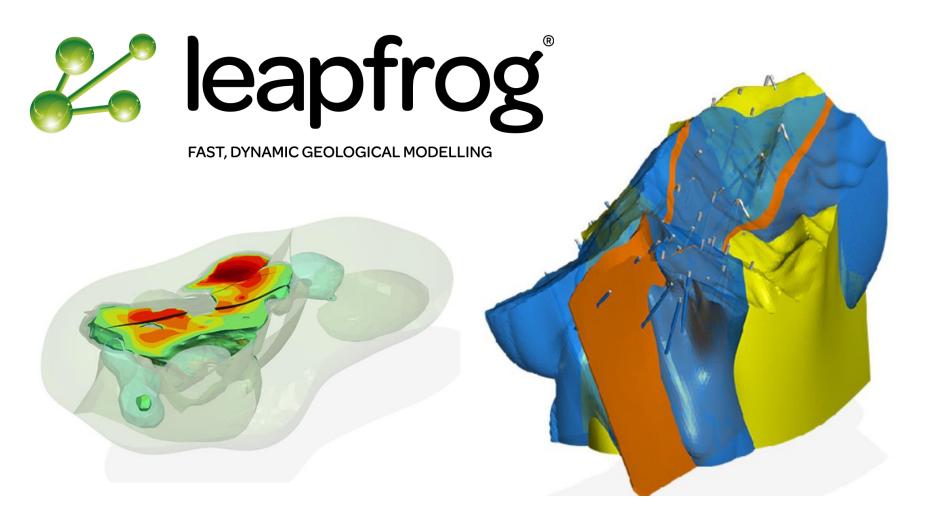
Statistical analysis on various aspects of collected data

Excel



Plotting data to compare across project areas

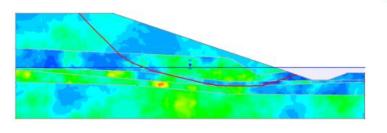
PowerPoint

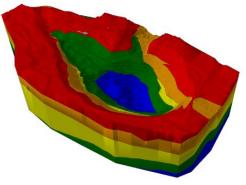


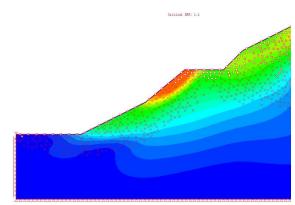
Organizing various outputs to allow reviewer to quickly look at the results

Other Software - LeapFrog

Other Software - RocScience


Slide2

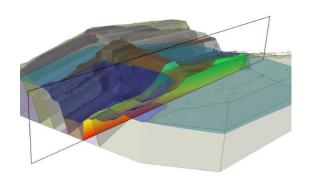



Slide3

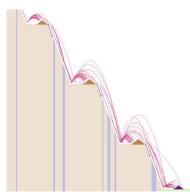
RS₂

 Modeling slopes using a simplified method of slices Three
 Dimensional version of Slide2

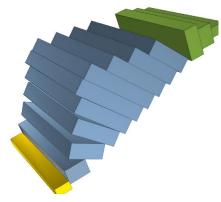
Similar to
Slide2, but the
model is split
into triangle
instead of
larger slices



Other Software - RocScience


RS3

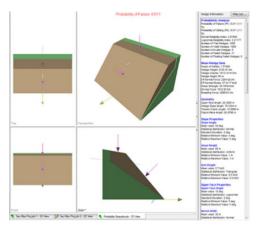
 Three dimensional version of RS2


RocFall

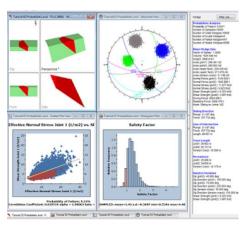
 Analyses of where smallscale failures will land

RocTopple

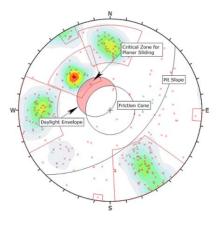
 High angle perpendicular discontinuities can fall over like a stack of books



Other Software - RocScience


RocPlane

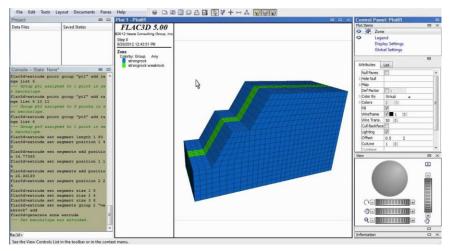
 Analysis of a single discontinuity that runs sub parallel to a slope


SWedge

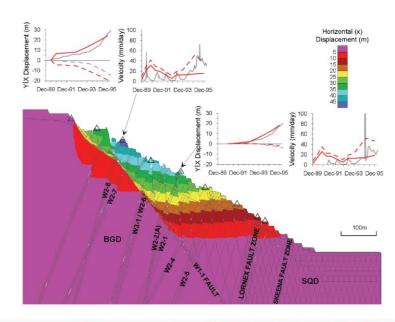
Analyses of how two discontinuities can create a wedge

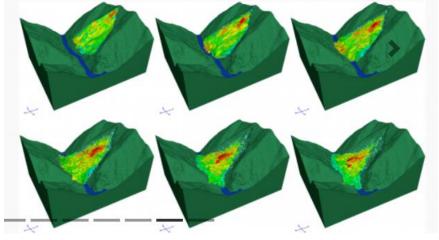
Dips


 Analysis of discontinuities over a large data set



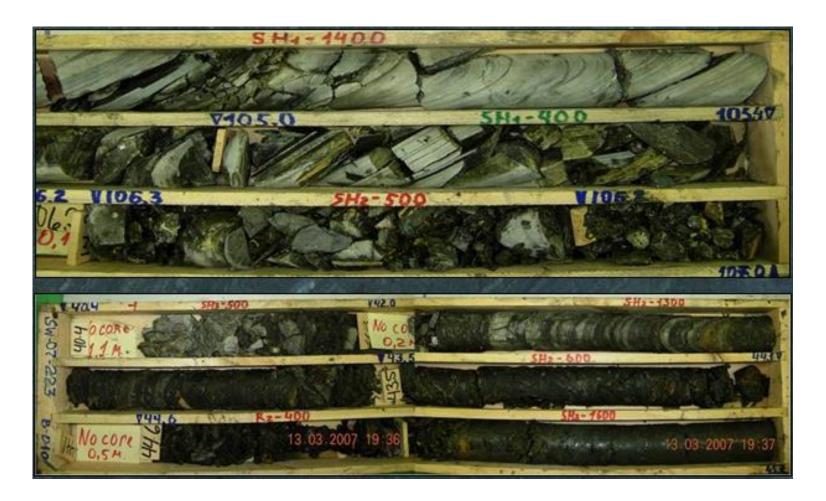
Other Software - Itasca





Other Software - Itasca

Field Work - Site Conditions



Field Work - Rock Mass Conditions

These can vary substantially from *very weak* to...

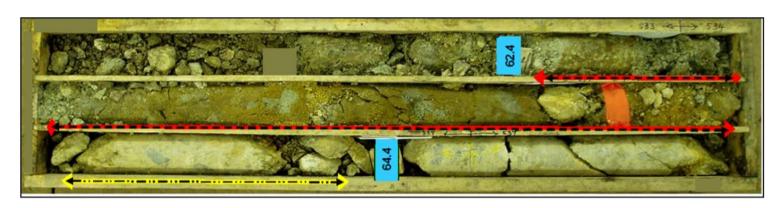
Field Work - Rock Mass Conditions

... massive These can vary substantially from *very* weak to...

Field Work – Lots of Variability

Slope Design – Two Paths

Rock Mass VS Kinematics

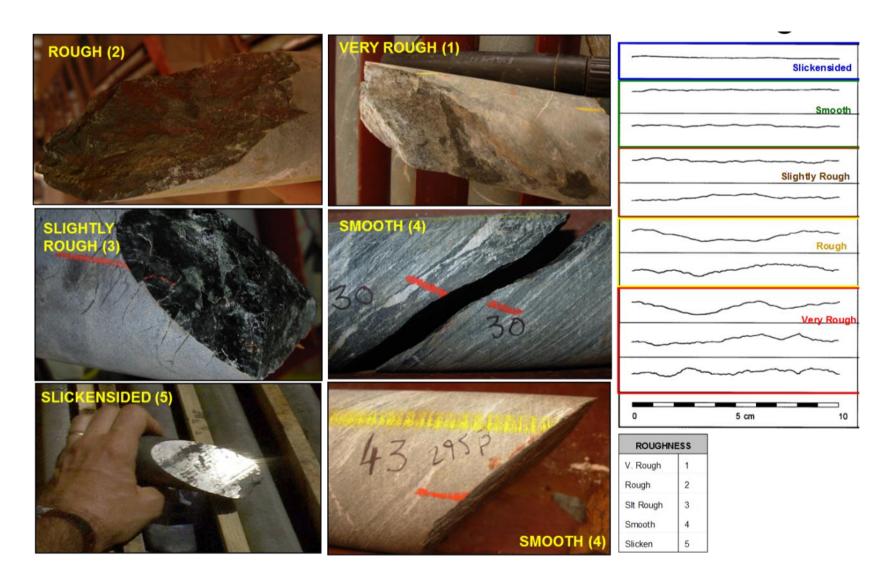


Independently find a design for each part of the wall and select the lowest angle

Rock Mass: Intact Rock Strength – Empirical

IRS								
Strong	Weak	% Weak						
R3	S3	80						

- Start with the rock pick test, and then continue further tests to see whether the intact rock is weaker.
- \bullet The weak rock is classified in the R0 R1 range if more rock like material, or the S1 S6 range if more soil like material


Index Abrv.	Description	Field Test Uni	Approximate Range Uniaxial Compressive Strength (MPa)			
SI	Very Soft Clay	Easily penetrated several inches by fist	< 0.025			
S2	Soft Clay	Easily penetrated several inches by thumb	0.025 - 0.05			
S3	Firm Clay	Penetrated several inches by thumb with mod. effort				
S4	Stiff Clay	Indented with thumb, but penetrated with great effort	0.10 - 0.25 ort			
\$5	Very Stiff Clay	Readily indented with thumbnall	0.25 - 0.50			
86	Hard Clay	Indented with difficulty with thumbnail	> 0.50			

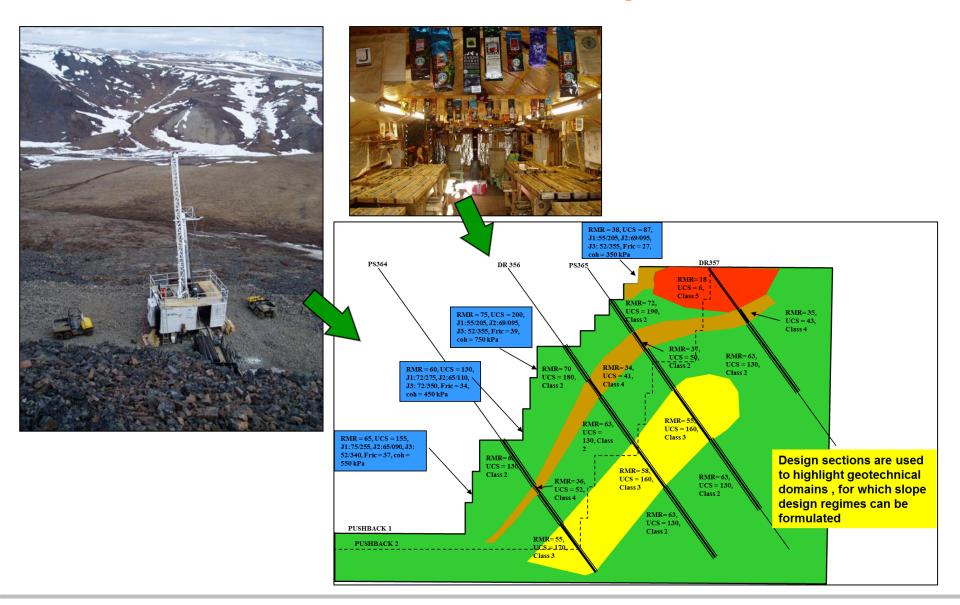
RO	Extremely Weak	Indented by Thumbnail	0.25 - 1.0
R1	Very Weak	Crumbles under firm blow	1.0 - 5.0
		of geologic hammer pick, peeled by pocket knife	
R2	Weak	Shallow indentation under	5.0 - 25
		firm blow of pick end of geologic hammer	
R3	Medium Strong	Fractured with single firm	25-50
		blow of geologic hammer	
R4	Strong	Requires more than one	50 - 100
		blow of hammer to fracture	
R5	Very Strong	Requires many blows of hammer to fracture	100 - 250
R6	Extremely Strong	Can only be chipped with	> 250
		strong blows of hammer	

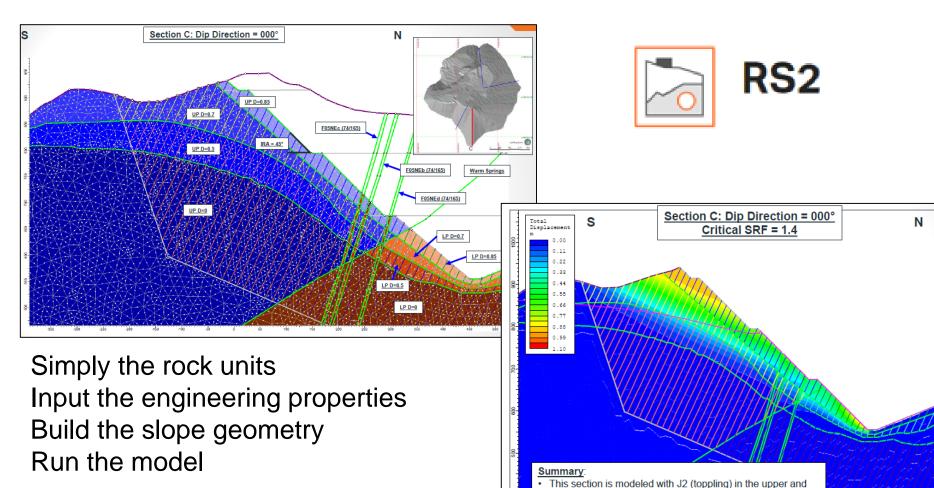
Rock Mass: Joint Roughness

Rock Mass: Joint Fill Strength

Fill Strength									
None	1								
Hard <5 mm	2								
Hard >5 mm	3								
Soft <5 mm	4								
Soft >5 mm	5								

Note: Fill strength refers to the strength of fill in the fractures. A "soft" fill can be defined as material which can be scraped with minimal effort (e.g. chlorite, clay).




Rock Mass: From Drill Core To Slope Domains

Rock Mass Modeling

Objective: ensure the Factor of Safety is less than the acceptance (~1.3)

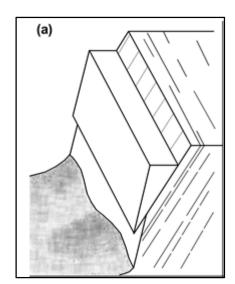
lower plates. Flexural toppling in upper stack is causing sliding failure in the lower stack with the F05NEd as the

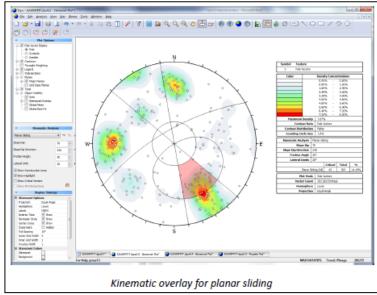
This section is limited by kinematic constraints (potential

toppling) and cannot be optimized further

Rock Mass – Summary

	General		Input Criteria and Slope Geometry					Results and Design					
Section ID	Objective	Section Location	Kinematic Constraints (Dip/Dip Direction)	Modelled IRA	Slope Height (m)	Slope Profile	SRF	Instability Mechanisms	Results Discussion	Design Considerations			
A-A'	Confirm kinematic constraints on North Wall stability. Modelled Slope Azimuth: 175°	North wall (Domain 2L- E & 3)	Joints: J2: 65°/175° J3b: 85°/355° Faults: F02NE: 65°/315° F02NEd: 78°/317° F01NEd: 78°/317° F4Neb: 84°/330°	38° (top stack), and 45°	315	Convex (Bullnose)	1.5	Planar sliding on J2 + Flexural toppling on J3b	The interpreted failure mode is planar along J2 and potential toppling on J4b in the upper portion of the slope. There does not appear to be a noticeable change in results with the decrease in out of plane stress which may result in a need to examine this in more detail with 3-D analysis software package (i.e. FLAC3-D). Due to the location of this section and the current pit slope geometry, there will be a lack of confinement to the west due to the convex slope geometry (i.e. 'bullnose') which is represented in this section with a lower out of plane stress (0.5). J1 (S ₁ /S ₀) has not been included in this section as it does not, geometrically speaking, represent a kinematic risk to the analyzed pit wall dip direction range. However, as this is a convex slope potentially impacted by more complex failure modes (potentially including J1).	This area should be confirmed with 3-D modelling if the slope geometry remains similar (i.e. convex slope)			
B-B'	Confirm kinematic constraints on East Wall stability. Modelled Slope Azimuth: 255°	East wall (Domain 3)	Joints: J1 (S ₁ /S ₀): 32°/266° J4a: 85°/255° <u>Faults:</u> F04NE: 80°/320° F01NE: 78°/315°	30°	295	Constant Azimuth (Linear)	1.3	Planar sliding on J1 (S ₁ /S ₀)	The interpreted failure mode is planar sliding along the main foliation (J1 (S ₁ /S ₀) at dip of 32°). The slope remains stable when J1 is not undercut.	It is unlikely that benches will be mined on this slope. The slope is likely to be stripped along J1 (S ₁ /S ₀) fabric with geotechnical berms spaced every 60m. Ramps should not be constructed along this slope.			
C-C'	Confirm kinematic constraints on South Wall stability. Modelled Slope Azimuth: 000°	South wall (Domain 4U & 4L)	Joints: J2: 65°/180° Faults: F05NEb: 74°/165° F05NEc: 74°/165° F05NEd: 74°/165°	45°	380	Concave	1.4	Toppling on J2	The lower stack of this modelled section falls within the 4L domain and the upper stacks are within the 4U domain. The pit slope was modeled at an IRA of 45°. The interpreted failure mode is toppling on J2. J1 was not included in this section and likely won't be an issue in the south due to it dipping into the slope so a 3-D analysis will not be necessary. This sector was not optimized over the kinematic recommended angle of 45°.	J6 was not included in this model as a basal plane for toppling. It will be important to insure that the set does not daylight in this section to allow for toppling otherwise a shallower angle will be required for the lower stack.			
D-D'	Confirm design constraints with talc present in the final wall Model Slope Azimuth: 025°	South wall (Domain 4U & 4L)	Joints: J2: 65°/180° Faults: F05NEb: 74°/165° F05NEc: 74°/165° F05NEd: 74°/165°	Upper Plate: 45° Lower Plate: 40°	295	Constant Azimuth (Linear)	1.3	Toppling over J2 on top of the talc intersection	The lower stack of this modelled section falls within the 4L domain and the upper stacks are within the 4U domain. The pit slope was modeled at an IRA of 45° in the Upper Plate and 40° in the Lower Plate. The interpreted failure mode is toppling on J2 and along the talc intersection in the pit wall. J1 was not included in this section and likely worlt be an issue in the south due to it dipping into the slope so a 3-D analysis will not be necessary.	Slopes that have partial sections of talc in the final wall can cause instability risk.			

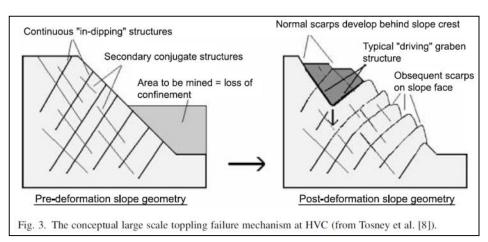


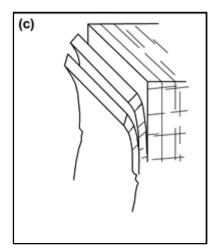


Kinematics – Plane Failure

Undercutting planes can lead to extensive instability

http://www.rocscience.com/products/1/Dips




Kinematics – Toppling Failure

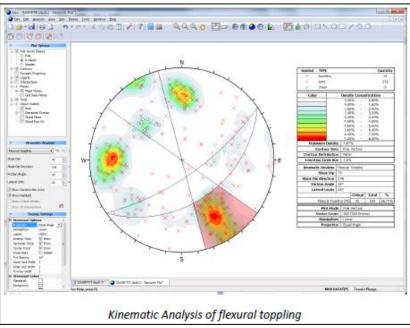
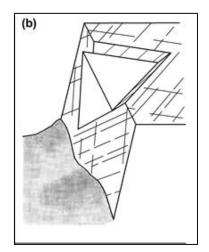
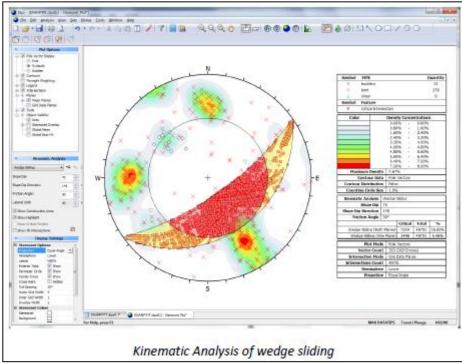


Figure 10.8: Bench scale block toppling on joints in granodiorite

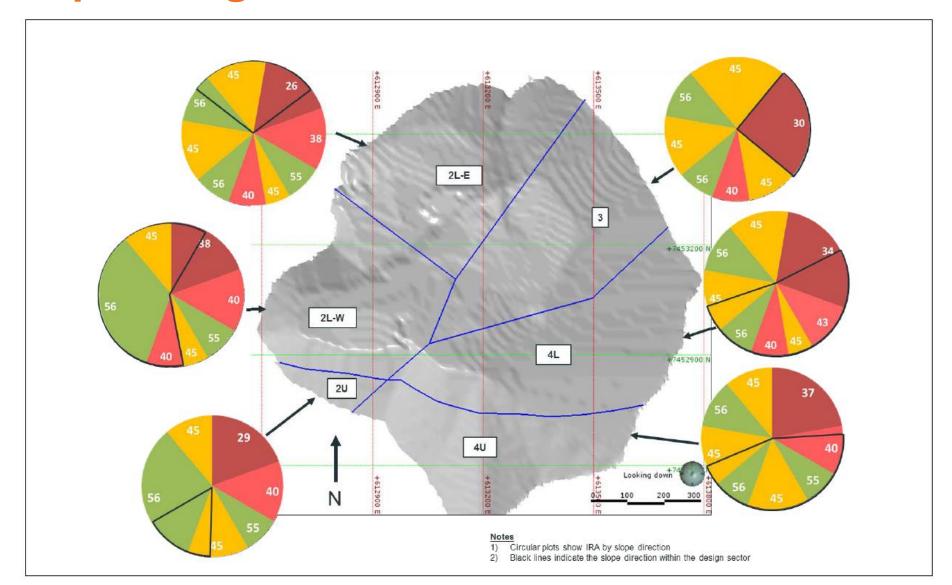
Tosney, J.R., Chance, A.V., Milne, D. and Amon, F.: A Modelling Approach for Large Scale Slope Instability at Highland Valley Copper. In: CIM Mining Millennium Conference Proceedings, Toronto, 2000.


http://www.rocscience.com/products/1/Dips



Kinematics – Wedge Failures

http://www.rocscience.com/products/1/Dips


Kinematics – Summary

			IRA I	Mitigated R	Risks			Design		
Domain	Slope Direction	Bench Risks	Toppling	Planar	Wedge	IRA (°)	Effective BFA (°)	Bench Height (m)	Bench Width (m)	Limitation
	330 - 350	Low	J2 Mod	J3a Mod	Low	45	65	15	8.0	J2 Toppling
	350 - 020	Low	J2 High	J3a Mod	Low	40	65	15	11.0	J2 Toppling with J6 basal plane
	020 - 050 Low		Low	Low	Low	56	80	15	7.5	N/A
	050 - 100	Low	J4a Mod	Low	Low	45	65	15	8.0	J4a Toppling
2L-E	100 - 140	Low	Low	Low	Low	56	80	15	7.5	N/A
	140 - 190	Low	J3b Mod	Low	Low	45	65	15	12.5	J3b Toppling
	190 - 250	High	J4b Mod	J1 High	J1/NE Mod	26	27	60	8.0	J1 Planar
	250 - 300	Low	Low	Low	J1/NE High	38	80	15	16.5	J1/NE-Fault Wedge
	300 - 330	Low	Low	J3a Mod	Low	55	80	15	8.0	J3a Planar

Slope Design – Kinematic and Rock Mass

Who should go into Rock Mechanics?

- Strong background in science and math
- An interest in simplifying complex environments
- People who like to travel around the world and be in helicopters
- People who enjoy being outside
- An interest in rocks

Questions?

